skip to main content


Search for: All records

Creators/Authors contains: "Bacsa, John"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. 1,3-Dimethyl-2,3-dihydrobenzo[d]imidazoles,1H, and 1,1',3,3'-tetramethyl-2,2',3,3'-tetrahydro-2,2'-bibenzo[d]imidazoles,12, are of interest as n-dopants for organic electron-transport materials. Salts of 2-(4-(dimethylamino)phenyl)-4,7-dimethoxy-, 2-cyclohexyl-4,7-dimethoxy-, and 2-(5-(dimethylamino)thiophen-2-yl)benzo[d]imidazolium (1g–i+, respectively) have been synthesized and reduced with NaBH4to1gH,1hH, and1iH, and with Na:Hg to1g2and1h2. Their electrochemistry and reactivity were compared to those derived from 2-(4-(dimethylamino)phenyl)- (1b+) and 2-cyclohexylbenzo[d]imidazolium (1e+) salts.E(1+/1) values for 2-aryl species are less reducing than for 2-alkyl analogues, i.e., the radicals are stabilized more by aryl groups than the cations, while 4,7-dimethoxy substitution leads to more reducingE(1+/1) values, as well as cathodic shifts inE(12•+/12) andE(1H•+/1H) values. Both the use of 3,4-dimethoxy and 2-aryl substituents accelerates the reaction of the1Hspecies with PC61BM. Because 2-aryl groups stabilize radicals,1b2and1g2exhibit weaker bonds than1e2and1h2and thus react with 6,13-bis(triisopropylsilylethynyl)pentacene (VII) via a “cleavage-first” pathway, while1e2and1h2react only via “electron-transfer-first”.1h2exhibits the most cathodicE(12•+/12) value of the dimers considered here and, therefore, reacts more rapidly than any of the other dimers withVIIvia “electron-transfer-first”. Crystal structures show rather long central C–C bonds for1b2(1.5899(11) and 1.6194(8) Å) and1h2(1.6299(13) Å).

     
    more » « less
  2. The molecular tetravalent oxidation state for praseodymium is observed in solution via oxidation of the anionic trivalent precursor [K][Pr 3+ (NP(1,2-bis- t Bu-diamidoethane)(NEt 2 )) 4 ] (1-Pr(NP*)) with AgI at −35 °C. The Pr 4+ complex is characterized in solution via cyclic voltammetry, UV-vis-NIR electronic absorption spectroscopy, and EPR spectroscopy. Electrochemical analyses of [K][Ln 3+ (NP(1,2-bis- t Bu-diamidoethane)(NEt 2 )) 4 ] (Ln = Nd and Dy) by cyclic voltammetry are reported and, in conjunction with theoretical modeling of electronic structure and oxidation potential, are indicative of principal ligand oxidations in contrast to the metal-centered oxidation observed for 1-Pr(NP*). The identification of a tetravalent praseodymium complex in in situ UV-vis and EPR experiments is further validated by theoretical modeling of the redox chemistry and the UV-vis spectrum. The latter study was performed by extended multistate pair-density functional theory (XMS-PDFT) and implicates a multiconfigurational ground state for the tetravalent praseodymium complex. 
    more » « less